Search results for "Counting characters"

showing 1 items of 1 documents

The minimal number of characters over a normal p-subgroup

2007

Abstract If N is a normal p-subgroup of a finite group G and θ ∈ Irr ( N ) is a G-invariant irreducible character of N, then the number | Irr ( G | θ ) | of irreducible characters of G over θ is always greater than or equal to the number k p ′ ( G / N ) of conjugacy classes of G / N consisting of p ′ -elements. In this paper, we investigate when there is equality.

CombinatoricsFinite groupAlgebra and Number TheoryCharacter (mathematics)Brauer's theorem on induced charactersConjugacy classCharacter tableCharactersCounting charactersFinite groupsNormal p-subgroupsMathematicsJournal of Algebra
researchProduct